Item #1670 Wave Power in Nature 249, June 231, 1974. pp. 720-724 [Salter’s Duck. Energy Review Issue] and Modeling Tide and Surge Interaction, pp. 692-693 [Discovery of Interaction Between Astronomical Tides & Storm Surges]. S. H. Salter, J. Darbyshire, Stephen.

Wave Power in Nature 249, June 231, 1974. pp. 720-724 [Salter’s Duck. Energy Review Issue] and Modeling Tide and Surge Interaction, pp. 692-693 [Discovery of Interaction Between Astronomical Tides & Storm Surges]

London: Macmillan & Sons, 1974. 1st Edition. FIRST EDITION IN ORIGINAL WRAPPERS of Stephen Salter’s influential paper on a wave energy converter (WEC) he invented known, the celebrated and eponymous “nodding duck,” commonly called Salter’s Duck. In the 1970s, alternative energy was beginning to gain a lot of hype due to the oil crisis, Salter’s design was the most exciting possibility.

Note: Information on Darbyshire's discovery appears at the end of this write-up.

Stephen Salter is Emeritus Professor of Engineering Design at the University of Edinburgh and inventor of the eponymous Salter duck wave energy device. He is also a proponent of geoengineering and is responsible for creating the concept of the mechanical enhancement of clouds to achieve cloud reflectivity enhancement. Salter is responsible for the design and invention of the wide tank at the University of Edinburgh, the world's first multi-directional wave tank equipped with absorbing wavemakers.

With the aim of providing a renewable and sustainable source of power, Salter’s Duck was designed to harness energy from ocean waves and convert it into electricity. The Duck fells under a class of WECs known as terminators. Terminators are oriented perpendicular to the direction of the wave. When effective, they destroy the waves they face, leaving a calmer sea on the other side.

The device itself is shaped like a large floating buoy or duck, and its design is optimized to efficiently capture and convert wave energy. The duck bobs up and down with the motion of the waves, and this movement is used to drive a hydraulic system, which in turn generates electricity. The key innovation of Salter's Duck was its ability to efficiently convert the linear motion of waves into rotational motion for electricity generation.

While Salter's Duck was an innovative concept and faced challenges in terms of scalability and cost-effectiveness, “the funding for the project was cut off in the early 1980s after oil prices rebounded and the UK government moved away from alternative energy sources” (Wikipedia).

OTHER PAPER OF NOTE: In Darbyshire’s “Modeling tide and surge interaction,” he presents his discovery that the interaction of astronomical tides and storm surges is nonlinear, and that this nonlinear interaction can form additional storm surges. Item #1670

CONDITION & DETAILS: London: Macmillan. 4to. (11 x 8.25 inches; 275 x 206mm). Original wraps. Inclusive of label & very light stamp on front wrap. Slight wear at the edge tips. Tightly bound & very clean inside & out. Very good condition.

Price: $250.00

See all items by , ,